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Summary

A weak-wave analysis of shock interaction with

a slipstream is presented. The theory is compared

with the acoustic theory and to the exact nonlinear

analysis. Sample calculations indicate that the weak-

wave theory yields a good approximation to the exact
solution when the shock waves are sufficiently weak

that the associated entropy increase is negligible. A

qualitative discussion of the case of counterflowing
streams is also included.

Introduction

When a shock is incident on an interface of rela-

tive motion, a wave is usually transmitted through
the interface and another wave is reflected. The

strengths of these two waves are determined by two

boundary conditions: pressure and flow directions

are equal on the two sides of the interface both ahead

of, and behind, the interaction point. The corre-

sponding problem for sound waves has been solved

by both Ribner (ref. 1) and Miles (ref. 2). These
solutions corrected earlier erroneous analyses. For

shock waves, the changes in flow direction are re-

lated to wave strengths in a highly nonlinear way;

consequently, solutions are obtained by iteration (as,

for example, in ref. 3).
The weak-wave analysis, which is given herein,

provides an intermediate solution valid for weak

shocks. It yields analytic expressions which are more
accurate for shocks than the acoustic approximation.

Furthermore, the derivation of the results provides

some physical insight into the relationship of the

acoustic theory to the full shock wave problem.

The material is presented in the following order.

First, the problem is described and the boundary
conditions at the interface are given. Then, the

results of references 1 and 2 for the acoustic case are
summarized. The acoustic results are taken as a first-

order approximation for weak shocks, and the weak-

wave theory is developed as a correction to this first-

order approximation. One way of solving the exact
equations is then described and the results of the

three theories are compared. Finally, a qualitative
discussion of the case of counterflowing streams is

given.

Symbols

a

b

M

coefficient defined by equation (17b)

coefficient defined by equation (17c)

Mach number

pressure

R

T

A

5

0

/2

Subscripts:

i

r

T

t

o

1,2.3,4,5

reflection coefficient, defined by

equation (35)

transmission coefficient, defined by

equation (36)

parameter defined by equation (10)

= x/-M-2 _ 1

ratio of specific heats

change in quantity due to shock or

expansion wave

small variation in quantity

___4e
P

shock angle

flow deflection angle

incident

reflected

total

transmitted

acoustic solution

region 1,2,3,4,5, respectively (fig. 1)

Analysis

Basic Considerations and Boundary Conditions

If the incident shock is curved, its radius of cur-

vat,we is assumed to be large relative to the thick-

nesses of the shock waves and of the slipstream. Con-

sequently, the interaction may be treated as a local

phenomenon (assuming negligible shock wave thick-

ness). (See, for example, the interesting schlierens in

ref. 4.)
The flow configuration is diagrammed in figure 1.

The undisturbed parallel flows in regions 1 and 5

proceed from left to right. A shock i in region 1 is
incident on the slipstream, giving rise to a reflected

compression or expansion wave r and a transmitted
shock t.

The pressures in regions 1 and 5 are equal, as are
those in regions 3 and 4. Consequently, the pressure

increments through the waves satisfy the relation

_Pi -k Apr = (P2 -- Pl) q- (P3 -- P2) ---- P4 -- P5 ---- APt (1)

Similarly, the changes in flow direction must
match on the two sides of the slipstream. Notice,

however, that the incident shock deflects the flow

downward, whereas a reflected shock tends to deflect



theflowupward.Therefore,this latterdeflectionap-
pearswith a negativesign.

- -r = a (2)

Thus, a reflection expansion produces a negative ur.

Equations (1) and (2) are exact within the

assumptions of the theory. Approximations en-

ter in converting the pressure increments to shock

strengths and in relating the shock strengths to flow
deflections.

Acoustic Theory

As was mentioned in the Introduction, the acous-

tic approximation has been treated independently by

Ribner (ref. 1) and Miles (ref. 2). Ribner's treat-

ment is especially interesting in the present context,
because he treats the sound waves as Mach waves.

However, in the usual acoustic analysis the pressures
P2, P3, and P4 represent sinusoidal perturbations on

the undisturbed pressure Pl (= Ph), and equation (2)
represents a relation between the slopes in a sinu-
soidal ripple in the slipstream.

Equation (1) is written in the form

Api Apr Apt
-- + -- (3)
Pl Pl P5

In the acoustic approximation,

B Ap
u -- (4)

"TM 2 p

Consequently, in this approximation, equation (2)
can be written

_1 ( Api Apr,_ _5 APt (5)
"71M21 Pl Pl / YhM_ P5

If the reflection coefficient is defined by

R =- Apr/P2 -- Apr/Pl Apr
Api/Pl Api/Pl -- Ap i (6)

and the transmission coefficient by

T =_ Apt/P5 Apt/P1 Apt- - (7)
Api/Pl Api/Pl Api

equations (3) and (5) become, respectively,

1 + R = T (8)

1 - R = zT (9)

where

z =  lM12Z5
"/5M52_1

The solution of this set of equations is

(10)

1--Z

R
1 + z (11)

2
T

1 + z (12)

This acoustic solution represents a first-order so-

lution for weak shocks. Since it is an acoustic ap-

proximation, it is independent of wave strength. It
also provides other useful information relating to the

shock wave solutions. For example, if z -- l, then

R = 0 so that there is no reflection, and the entire
wave is transmitted. One such case occurs when the

two streams are at the same temperature, there is no
relative motion, and _1 = 3'5. But it can also occur

if there exists a small relative motion provided that

there is a compensating difference in the _'s..

Equation (11) indicates that when z < 1 the

reflected wave is a compression, and equation (12)
indicates that the transmitted wave is stronger than

the incident wave. Conversely, for z > 1, the reflected
wave is an expansion and the transmitted wave is

weaker than the incident wave. These qualitative
results should be applicable within limits for shock

waves. They are useful in selecting the appropriate
set of equations to be solved for full-shock solutions

and also in setting the limits for the intervals over
which solutions are sought.

Weak-Shock Theory

To treat waves of finite strength, equation (1)
must be expressed in terms of wave strengths. This

is accomplished by writing the second term in equa-

tion (3) (which is an exact equation) in the form

apr -- APr P2 -- _Pr ( I-k p2 - p_I )plP2 Pl P2 Pl

Equation (3) then becomes

= er(1 + el)

(13)

ei+(l+ei)er =et (14)

It is assumed that either the incident shock strength

or the incident shock angle is prescribed, since each

of these quantities can be directly prescribed in terms

of the other. (See ref. 5, formula (128); see also
subsequent eq. (26).)



Theweak-wavesolutioncanbe treatedasacor-
rectionto the acousticsolution.Thus,denotingthe
resultsof theacousticsolution(eq.(4)) bythe sub-
scripto, equation (2) becomes

vi - (Vr,o + 5Ur) = Vt,o + 6vt (15)

which, by subtracting the acoustic relation, yields

simply
--_/]r = (_t/t (16)

The second-order relation between the flow de-

flection angle and the wave strength is (see ref. 5,

formulas (151) and (174))

where

e -- au ÷ bt/2 (17a)

a- qM2 (17b)

q'M 2 ,

b = -_-[U'/+ 1) M4 - 4_2] (17c)

The values of "r and /_ in these expressions are

those immediately ahead of the wave. For an ex-

pansion, the deflection angle v is negative and, con-

sequently, the first-order term in equation (17a) be-
comes negative. The second-order term is identical

for compression and expansion waves.

Since _/1, "_5, M1, and M5 are prescribed, al, bl,

a5, and b5 can be computed directly. In order to

compute a2 and b2, the value of M2 is required. It
could be estimated by the weak-wave approximation

(ref. 6, p. 292), but since the exact expression (ref. 5,
formula (157)) is only slightly more complicated, it

was used in the present study.

Substituting equations (17) into equation (14)

yields

al lJi q- bl lJ? q- (1 q- al t/i ÷ bi tj2 ) (a2t/r d- b2/z2)

_--a5/., t q- b5v? (18)

If terms higher than second-order are discarded,

equation (18) becomes

altJ i ÷ blu? ÷ a2t/r q- ala2vi_r ÷ b2tz2r

-- a5p t q- bsv2t (19)

Now when t/ is written as a correction to the

acoustic solution, as in equation (15), the correction
6v results from including terms of order u 2. Thus,

substituting v = Vo + 6v for the reflected and trans-
mitted waves in equation (19) and again eliminating

terms higher than second-order yields

alvi ÷ bll]? q- a21Jr,o ÷ a25lJr ÷ ala2lzilJr,o

+ b2vr2,o = a5Vt,o + a5_vt + b5u_o

Subtra( ting the first-order accurate relation

(20)

al lei + a21Zr,o = a5Vt,o (21)

yields for the second-order terms

_'z26Vr -- a55vt = b5v2,o - b2vr2,o - bl v_

- ala2ViVr,o (22)

The in_erpretation of the terms in this equation is
as follows. The coefficients a 2 and a5 of the left-

hand t_rms indicate the proportional influence of the

second-order corrections on the reflected and trans-

mitted wave strengths, respectively. The first three

terms (,n the right result from including the nonlinear
second-order term in the relation between flow angle

and wave strengths. The last term represents the in-

fluence of the pressure increase through the incident

wave on the strength of the reflected wave. This lat-

ter term is negative for a shock and positive for an

expansion.

Now substituting -SVr for 6vt from equation (16)

into equation (22) yields the solution

5_r -_ b51j2'° -- b2t_2r'° - bl p? -- ala2b'ib'r'° (23)
a 2 -b a5

The actual flow deflection through the reflected wave

is

Vr = Vr,o + 5Vr (24)

The flow deflection through the transmitted wave can

now b,'. obtained from equation (2). The strength of

the retlected wave is, from equation (17a),

Cr = a2tZr + b2l/2r (25)

and et is then obtained from equation (14).

Exact Shock Relations

To solve the exact equations for the flow quan-

tities -n regions 3 and 4 requires a numerical pro-
cedure. The specific formulas used in the procedure

depend on the nature of the reflected wave (compres-

sion or expansion) and also on the flow parameters
that are specified. Any fundamental quantity relat-

ing to the reflected or transmitted waves or to the

flow iI_ regions 3 or 4 may be chosen as the unknown

parameter to be solved for in the numerical proce-
dure. For the following calculations, Cr was chosen

for the unknown parameter if the reflected wave was



a compression,but M3 was found to be a more con-

venient parameter to solve for if the reflected wave

was an expansion.

Reflected compression. For the former case (re-
flected compression) the following method was used.

The quantities M1, Ms, ql, "75, Pl, P5, and either

ei or 0 i are assumed to be given. If 0 i rather than

e i is specified, then e i is computed from the formula

(ref. 5, formula (128))

2'7M 2 sin20 - ('7 - 1)
= (26)

'7+1

Note that here e corresponds to _ - 1 in reference 5.

The Mach number in region 2 is obtained from the

relation (ref. 5, formula (157))

M 2 = M12 [('7 + 1)e + 2"7] - 2e(e + 2) (27)
(1 + E)[('7 - 1)e + 2'7]

It is assumed that the value of '7 does not change

through the shock (although different values of "7may

exist on the two sides of the slipstream). The flow
deflection u i due to the incident shock is determined

by (ref. 5, formula (160))

tanu= ( e )4/2"7(M2-1)-(_+1) e
'TM _-- e V ('7 7 1)e_2--_-_

(2s)
Thus, the required quantities in region 2 are com-

puted directly without iteration. Equation (28) also
yields a relation

Ur = ur(M2, _r) (29)

The transmitted wave strength et is now ex-

pressed in terms of er by equation (14). Equation

(28) is then used to determine Pt = ut(M5, et). But
with et replaced by et(er) and with '7 = 75, this re-
lation becomes a function of Zr

-t (3o)

Finally, substituting the functions in equations (29)
and (30) into equation (2) yields a single equation

for the unknown parameter er, which is determined
numerically as a zero of the function

f(gr) = 11i -- lYr(Er) -- Vt(Er) (31)

From the value of er thereby obtained, et is found
from equation (14), and the reflected and transmitted

shock angles are found by solving equation (26) for
O. It is not necessary to determine the flow deflection

4

angles now, since they are computed at each step
in the numerical procedure and written over at the

subsequent step. Thus, the final values stored in

these locations when the procedure has converged are
the correct values.

Reflected expansion. When the reflected wave

is an expansion, it is convenient to choose for the

unknown parameter the Mach number in region 3

M3; then the relation (ref. 5, formula (44))

(32)

is applied as follows. First, using the known values of

P2 and M2 (eq. 27)), equation (32) is solved for PT,2.
Then, since PT,3 = PT,2 for a reflected expansion,
equation (32) determines P3 as a function of 3//3. The

flow deflections, in expanding from M = 1.0 to 3/12
and from M -- 1.0 to M3, are calculated from the

relation (ref. 5, tbrmula (173b))

, _/_1-tan-1 1/___](M2 1)

-1 1
-- COS --

M

(33)

The difference of these two calculations is ur(M3).

Now p3(M3) is calculated by equation (32) and, since
P2 is known, er can be calculated. Substituting this

value into equation (14) yields et(M3). The flow
deflection vt associated with the transmitted shock is

then calculated as a function of M 3 by equation (28).
Finally, the value of 3,/3 is determined numerically as
the zero of the function

g(M3) = ui - ur(M3) - ut(M3) (34)

The remaining flow variables can now be calculated

by substituting this value of M3 back into the previ-
ous relations.

Computed Examples

Several sample calculations were performed for

the purpose of comparing the acoustic, weak-wave,
and exact solutions. The results of the calculations

are displayed in figures 2 and 3. For the weak-wave

and exact solutions, the reflection and transmission

coefficients are defined by

R_ _r (35)
ci

T- et
(36)

ei



Equations(6) and(7) for the acousticcasearecon-
sistentwith thesedefinitionssincetheacousticpres-
sureamplitudesareall referredto the undisturbed
pressurePl (= P5), and dividing both numerator and
denominator by this quantity does not change the

ratio.

The results demonstrate that, for all the exam-

ples, the weak-shock solution is an improvement over
the acoustic approximation, and in most cases it is

remarkably accurate. In all cases for which the re-

flected wave is an expansion or a very weak shock, the

weak-wave results are significantly better than those

for a reflected shock of strength comparable with that

of the incident shock. (Compare figs. 2(h) (k).)

This indicates that, although the entropy increase

is third order in shock strength, the effect of the en-

tropy variation is noticeable. The approximate theo-

ries also yield poor results when the local Mach num-

ber falls into the highly nonlinear region near M = 1.

(See fig. 2(a), where M4 _ 1.)

Counterflowing Streams

References 1 and 2 observe that strong amplifica-

tions of the reflected and transmitted waves are possi-

ble if the streams separated by the interface are flow-

ing in opposite directions. It is difficult to imagine

a practical steady-state situation for which two su-

personic streams would be counterflowing. One can,

however, conceive of several situations for which such

a phenomenon might occur on a transient basis. One

possibility would be a shock wave, emitted by a pass-

ing airplane or from a blast, incident on a supersonic

jet. Figure 4 depicts such a possibility.

Suppose, for example, the jet emerges at M -- 3
relative to the ambient air, and an airplane is flying

in the jet flow direction at M = 1.6 so that the

shock that it generates is incident on the jet. Then,
relative to a coordinate system moving with the point

of interaction at the interface, there is a M = 1.6

flow moving toward the left above the interface and

(assuming the same sound speed in the jet as in the
ambient air) a M -- 1.4 flow moving toward the right
below the interface.

The acoustic analysis (refs. 1 and 2) of this prob-

lem is straightforward. The Mach number of one

of the flows is simply indicated to be negative and

the parameter z in equation (9) is also determined

to be negative. Then, the denominators in the ex-

pressions for the reflection and transmission coeffi-

cients (eqs. (11) and (12)) can become very small

and therefore yield large values for the reflected and
transmitted wave amplitudes. However, it should

be mentioned that this analysis rapidly becomes

inconsistent, since large amplitude acoustic waves

propag_.te nonlinearly and develop into shock waves,
which are governed by a different set of boundary

equatious. For these equations one should assume
that th,' free-stream conditions "71, M1, "74, and M4

(fig. 400 ) are prescribed, as well as the strength ¢1
of the incident shock. However, at the interface, up-

stream influences always occur since each stream is

flowing upstream relative to the other. Thus, a flow

angularity can develop ahead of both incident and re-
flected _hocks, and consequently, the problem is not

well-po,,ed.

However, if one simply proceeds formally, the

pressuro relation at the interface becomes

or

•:_2-P----!I + p3-P2p2 - (Ps-p4) P_4 (37a)
Pl P2 Pl P4 P5

¢i + (1 + ci)_r -- Ct (37b)
1 +¢t

or, since

t'2 P3 _ (1 + _i)(1 + ¢r) -- 1 _ P4
t'1 P2 1 + ¢t P5

E"i q- (1 Jr- Ei)_r = -(1 + ¢i)(1 + El)gt (37c)

Equati(,n (37b) or (37c) may be compared with the
simpler equation (14) for the coflowing case.

A weak-wave analysis of this problem would

hardly be justified inasmuch as the problem, as

noted, s not well-posed, it is largely academic, and

the we_&-wave theory loses accuracy for strong re-
flected _hocks.

Concluding Remarks

A _eak-wave analysis of shock interaction with a

slipstream has been presented. The theory was com-

pared with the acoustic theory and the exact nonlin-

ear analysis. Sample calculations indicated that the
weak-w_tve theory represented a good approximation
to the ,_xact solution when the shock waves are suf-

ficiently weak that the associated entropy increase

is negligible. A qualitative discussion of the case of

counteiflowing streams was also included.

NASA Iangley Research Center

Hampto:h VA 23665-5225

Septern[.er 19, 1988
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Figure 4. Transient phenomenon giving rise to counterflow situation. Sound speed in jet assumed to be

equal to that in ambient air.
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